(1-4) Write an equivalent expression for each of the following.

1.
$$(5^4)^2 =$$

2.
$$(y^6)^5 =$$

3.
$$\left(\frac{1}{2}\right)^5 =$$

4.
$$(6^{-2})^{-7} =$$

(5–6) Fill in each box with the missing number which will make each statement true.

5.
$$(g^{)5} = g^{10}$$

6.
$$(w^{-3})$$
 = w^{-21}

(7–10) Write an equivalent expression for each of the following. Evaluate number bases completely.

7.
$$(2x^6)^5 =$$

$$(2x^6)^5 =$$
______8. $(-5y)^3 =$ _____

9.
$$(cd^8)^4 =$$

9.
$$(cd^8)^4 =$$
______ 10. $(8a^3b^2c)^2 =$ _____

11. Jack wrote
$$(4^5)^2 = 4^7$$
 Explain his error.

Write the correct solution:

12. Evaluate completely: No calculator. Show all work. Remember to use exponent rules.

$$2^5 \div (6-4)^3 - 1^{17} + (-2)^3 + (4^2)^0$$