Name		Date
Mr. Tallman		Math 7

Lesson #11 - Sets of Numbers

Try to remember way back when you were first learning numbers. What types of numbers did you learn first? When did you learn the number zero? When did you learn about fractions? What about the difference between positive and negative numbers?

Consider the following: In the space below, describe the number five (5). Write down any words that you can think of that describe what type of number 5 is.

inhole	Number	Positive	٠.	Real Number
Intege		Counting	number	Rational rember

<u>Sets of Numbers:</u> Every number that we encounter on a daily basis are called **Real Numbers** and can be classified into certain **sets** (or groups). Each set of numbers has its own definition. These sets of numbers are:

- Natural (Counting) Numbers
- Whole Numbers
- Integers

- Rational Numbers
- Irrational Numbers

Note: Numbers do not have to only belong to one set of numbers. Numbers can belong to multiple sets of numbers

Number Set	Definition	Examples
Natural (Counting) Numbers	Positive whole numbers not including zero.	1, 2, 3, 4,
Whole Numbers	Positive whole numbers including zero.	0,1,2,3,4.00
Integers	Positive and negative whole numbers.	_3,-2,-1,0,1,2,3
Rational Numbers	Any number (positive or negative) that can be written as a fraction and has a terminating or repeating decimal .	1, 0.25, 1.6, 134
Irrational Numbers	Any number that cannot be written as a fraction and does not have a terminating or repeating decimal.	т, Га, 3.68715.

<u>Directions:</u> Classify the following real numbers as real, natural, whole, integer, rational, or irrational. Be sure to write down all that apply.

1) 0	2) -458	$\frac{1}{2}$
Real Whole	Integer rational	Cational (eal
£)	
Integer, rational	Real	:
	, i.	
4) π	5) 6.8	6) $\frac{12}{5}$
Irrational, Real	Kational (eal	Rational, Real
Non-Var Tari		

Now, You Try!

<u>Matching Column:</u> Write the letter of the definition that matches each set of numbers.

- 1) Rational Numbers ______
- 2) Integers _____
- 3) Whole Numbers ___

- A. Non-terminating, non-repeating decimals
- B. Terminating and/or repeating decimals.
- C. Positive and negative whole numbers.
- D. Natural numbers, including zero.
- 5) Which of the following sets does the number -38 belong to? Circle all that apply.
 - A) Irrational Numbers
- (B) Rational Numbers
- C) Whole Numbers

- D) Natural Numbers
- E) Integers

F) Real Numbers

6) Which of the following does th	e number π belong to? Cir	rcle all that apply.	
A)rrational Numbers	B) Rational Numbers	C) Whole Numbers	
D) Natural Numbers	E) Integers	F) Real Numbers	
True or False: For each statement	write true or false.		
7) 0 is only in the set of integers.	talse		
8) All whole numbers are natural	· · · · · · · · · · · · · · · · · · ·		
9) Irrational numbers are numbe	rs that can be written as fr	eactions. False	
10) Challenge – True or False: Th	e number $\pi + 2$ is an irrati	ional number.	
Ratio	nal Numbers vs. Irra	tional Numbers	
Recall the definition of Rational N	umbers: #'S tha	t Can be write	len
as fractions te	rminating or 1	t Can be write repeating decimals	
Example 1) In the space below, g \(\frac{1}{2} \) Recall the definition of Irrational	ive 3 examples of rational		en e
as fractions 4	have non-termin	ating AND non-refe	uting decimols
Example 2) In the space below, g	ive 3 examples of irrationa	ıl numbers.	
M, J.			

How can we tell if a number is rational or irrational?

·	
If a number is Rational, the number	If a number is Irrational, the number
 is expressed as a perfect square. 	 is not expressed as a perfect square.
Examples: $\sqrt{22}$ $\sqrt{23}$	Examples: $\sqrt{2}$, $\sqrt{7}$, $\sqrt{12}$
12525	
 is expressed as a terminating or repeating decimal. 	 is not expressed as a terminating or repeating decimal.
Examples: 0.3	Examples: 8.6315
1.2	_7.2187928
• can be written as a fraction or mixed number. Examples: $\frac{1}{2}$ $\frac{3}{4}$	cannot be written as a fraction or mixed number. Examples:
Note: All fractions are always rational	Examples. 7
can be written as an integer.	cannot be written as an integer.
Examples: -2 0 15	Examples: (1)

Tell whether the following numbers are rational or irrational. Explain.

Ex3) $\sqrt{2}$ I prational. $\sqrt{2}$ is a non-perfect Square.	Ex 4) $\frac{25}{31}$ Rational. $\frac{25}{31}$ 15 a fraction.
Ex 5) 13.174957390136 Trational. The decimal 13 ron-terminating & ron repeating.	Ex 6) $\sqrt{36} = 6$ Rational: $\sqrt{3}6$ is a ferfect Square.

Now, you try!

Tell whether the following numbers are rational or irrational. Explain.

7) 0.15	8) $\sqrt{25} = 5$
Rational. 0.15 13 a	Rational. JAS 13 a
terminating decimal.	perfect Source.
9) 13.174957390136	10) 2.3333
Irrational. Non-terminating +	Rational. Repeating decimal.
non-repeating decimal	

11) Which of the following is an **irrational** number?

A) 3.14

B) 5.025

C) 477 pi 13 alurous i Mational.

D) $\frac{22}{7}$

12) A rational number can always be written in which form?

A) Repeating Decimal

B) Fraction

C) Square Root

D) Terminating Decimal