Lesson 44 POWER TO POWER RULE

Date: _____

III. RAISING A POWER TO A POWER

$$(5^3)^2 = (5 \cdot 5 \cdot 5)^{\square} = \underline{\qquad}$$

How did you get from the first expression to the last expression?

Rule #3: When raising a power to a power, keep the base and **multiply** the exponents.

Ex:

$$(4^2)^5 = 4^{10}$$

$$(x^3)^7 = x^{21}$$

<u>Directions</u>: Write an equivalent expression for the following problems.

1)
$$(8^5)^9 =$$

3)
$$\left(\frac{2}{3}\right)^4 =$$

5)
$$(x^3)^6 =$$

2)
$$(3^6)^2 =$$

4)
$$(7^{-6})^{-8} =$$

$$6) \left(\frac{1}{5}\right)^3 =$$

$$(n^{\square})^4 = n^{O}$$

Sarah wrote that $(3^5)^7 = 3^{12}$. Correct her mistake. Write an exponential expression using a base of 3 and exponents of 5, 7, and 12 that would make her **answer correct**.

Bases with Variables and Numbers:

For any numbers x and y, and positive integer n, $(xy)^n = x^n y^n$ **Try these:**

Ex:
$$(4x^2)^3 = 64x^6$$

$$(x^3y^4)^2 = x^6y^8$$

<u>Directions</u>: Write an equivalent expression for the following problems.

9)
$$(2x^5)^4 =$$

9)
$$(2x^5)^4 =$$
 10) $(x^2y^4)^3 =$ 11) $(9x)^2 =$

11)
$$(9x)^2 =$$

12)
$$(ab^3)^2 =$$

13)
$$(5x^2yz^3)^2 =$$

14) Simplify the following expression completely. **Apply exponent rules**. Show work.

$$(4-1)^7 \div 3^5 + (2^3)^2 - 1^{10}$$