Lesson 44 POWER TO POWER RULE

III. RAISING A POWER TO A POWER

Rule \#3: When raising a power to a power, keep the base and multiply the exponents.

Ex:

$$
\left(4^{2}\right)^{5}=4^{10} \quad\left(x^{3}\right)^{7}=x^{21}
$$

Directions: Write an equivalent expression for the following problems.

1) $\left(8^{5}\right)^{9}=$
2) $\left(3^{6}\right)^{2}=$
3) $\left(\frac{2}{3}\right)^{4}=$
4) $\left(7^{-6}\right)^{-8}=$
5) $\left(x^{3}\right)^{6}=$
6) $\left(\frac{1}{5}\right)^{3}=$
7) Fill in the box with the missing number:

$$
\left(n^{\square}\right)^{4}=n^{0}
$$

8) Sarah wrote that $\left(3^{5}\right)^{7}=3^{12}$. Correct her mistake. Write an exponential expression using a base of 3 and exponents of 5,7 , and 12 that would make her answer correct.

Bases with Variables and Numbers:

 For any numbers x and y, and positive integer n, Try these:Ex: $\quad\left(4 x^{2}\right)^{3}=64 x^{6}$

$$
\left(x^{3} y^{4}\right)^{2}=x^{6} y^{8}
$$

Directions: Write an equivalent expression for the following problems.
9) $\left(2 x^{5}\right)^{4}=$ \qquad 10) $\left(x^{2} y^{4}\right)^{3}=$ \qquad 11) $(9 x)^{2}=$ \qquad
13) $\left(5 x^{2} y z^{3}\right)^{2}=$ \qquad
14) Simplify the following expression completely. Apply exponent rules. Show work.

$$
(4-1)^{7} \div 3^{5}+\left(2^{3}\right)^{2}-1^{10}
$$

