Lesson 45 - ZERO POWER AND NEGATIVE EXPONENTS

\qquad

IV. ZERO POWER RULE

Review: Apply the exponent rules that you have learned to simplify the following problems.

1) $\frac{y^{12}}{y^{12}}$
2) $X^{15} \cdot \frac{1}{x^{15}}$
3) $2^{3} \cdot 2^{4} \cdot \frac{1}{2^{7}}=$

What do you notice about the three answers above?

Rule \#4: Zero Rule: Any base raised to the zero power will equal \qquad .
Note: $\mathbf{0}^{0}$ is undefined.
Ex. $\quad 5^{0}=\quad(-12)^{0}=\quad y^{0}=\quad(.26)^{0}=$

V. NEGATIVE EXPONENT RULE

NEGATIVE EXPONENTS

Apply exponent rule: $\quad \frac{3^{4}}{3^{6}}$

Discovery:

Instead of applying the rule, expand out the numerator and denominator:

Rule \#5: When a base is raised to a negative exponent the answer will be a fraction. The numerator is the number one(1) and the base and exponent get moved to the denominator and the exponent becomes positive.

Ex: $7^{-2}=$

$$
2^{-3}=
$$

$$
x^{-5}=
$$

Directions: Write an equivalent expression for the following problems.

1) $6^{-4}=$
2) $\frac{x^{6}}{x^{9}}=$
3) $\frac{\left(b^{7} \cdot b\right)}{b^{8}}=$
4) $\frac{5}{5^{3}}=$
5) $3^{-8}=$
6) $\frac{\left(3^{2}\right)^{5}}{3^{20}}$
7) Fill in the box with the missing exponent: x^{7}

8) Evaluate the expression below:

No calculator

$$
(6-1)^{2}+4^{-2} \cdot 4^{5}
$$

9) Evaluate completely: $3^{3} \cdot 3^{2} \cdot 3^{1} \cdot 3^{0} \cdot 3^{-1} \cdot 3^{-2}$ No calculator
10) Write each answer as a simplified expression that is equivalent to the given one:
a) $x y^{-4}$
b) $15 \cdot 25^{-1}$
11) Which exponential expression is equal to $2^{-5} \cdot 2^{8}$?
A) $\frac{2^{2}}{2^{-1}}$
B) $\frac{2^{-2}}{2^{-1}}$
C) $\left(2^{3}\right)^{-1}$
D) $\left(2^{-1}\right)^{3}$
