Lesson 45 - ZERO POWER AND NEGATIVE **EXPONENTS** DATE:

IV. ZERO POWER RULE

<u>Review</u>: Apply the exponent rules that you have learned to simplify the following problems.

1)
$$\frac{y^{12}}{y^{12}}$$
 2) $x^{15} \bullet \frac{1}{x^{15}}$ 3) $2^3 \bullet 2^4 \bullet \frac{1}{2^7} =$

What do you notice about the three answers above?

Rule #4: Zero Rule: Any base raised to the zero power will equal Note: 0[°] is undefined. 5[°] =

Ex.

 $(-12)^0 =$

 $y^0 =$

 $(.26)^{0} =$

V. <u>NEGATIVE EXPONENT RULE</u>

<u>3</u>4 3⁶

NEGATIVE EXPONENTS

Apply exponent rule:

Discovery:

Instead of applying the rule, expand out the numerator and denominator:

Rule #5: When a base is raised to a **negative exponent** the answer will be a fraction. The numerator is the number one(1) and the base and exponent get moved to the denominator and the **exponent becomes positive**.

Ex:
$$7^{-2} =$$

$$2^{-3} =$$

 $x^{-5} =$

Directions: Write an equivalent expression for the following problems.

- 1) $6^{-4} =$ 2) $\frac{x^6}{x^9} =$ 3) $\frac{(b^7 \cdot b)}{b^8} =$ 4) $\frac{5}{5^3} =$ 5) $3^{-8} =$ 6) $\frac{(3^2)^5}{3^{20}}$ 7) Fill in the box with the missing exponent: $\frac{x^7}{x^9} = x^{-2}$
- 8) Evaluate the expression below: No calculator $(6 - 1)^2 + 4^{-2} \cdot 4^5$

- 9) Evaluate completely: $3^3 \bullet 3^2 \bullet 3^1 \bullet 3^0 \bullet 3^{-1} \bullet 3^{-2}$ No calculator
- 10) Write each answer as a simplified expression that is equivalent to the given one: a) Xy^{-4} b) $15 \cdot 25^{-1}$
- 11) Which exponential expression is equal to $2^{-5} \bullet 2^8$?

A)
$$\frac{2^2}{2^{-1}}$$
 C) $(2^3)^{-1}$
B) $\frac{2^{-2}}{2^{-1}}$ D) $(2^{-1})^3$