Lesson \#47 SCIENTIFIC NOTATION (day 2)

Scientific notation is a method of expressing very large and very small numbers.

A number in scientific notation can be written as a product of a number greater than or equal to 1 and less than 10, and a power of 10 .

$\underline{\text { SCIENTIFIC NOTATION } \rightarrow \text { STANDARD FORM }}$

How To:

Move the decimal point the same number of places as the number in the exponent.
Positive exponents move decimal to the right which creates a large number
Negative exponents move decimal to the left which creates a small number

Ex 1: Express 3.62×10^{5} in standard form.

Ex 2: Express 8.06×10^{-7} in standard form.

Practice: Express the following numbers in standard form.
3)
4.1×10^{3}
4) 7.02×10^{-4}
5) 6.004×10^{7}
6)
8.413×10^{6}
7) 3.002×10^{-5}
8) 2.9×10^{-3}
9) Place each of the following numbers in order from greatest to least. $\begin{array}{llllll}10^{5} & 10^{-99} & 10^{-17} & 10^{14} & 10^{-5} & 10^{30}\end{array}$
10) The average person takes about 3×10^{4} breaths per day. Express this number as an integer.
11) On average, Neptune is about $4.5 \times 10^{9} \mathrm{~km}$ from the sun, whereas Mercury is about $5.7 \times 10^{7} \mathrm{~km}$ from the sun. Write both number in standard form and find their combined distance.

Neptune: \qquad
Mercury: \qquad
\qquad
12) Are the following numbers written in scientific notation? If not, state why.
a) 1.87×10^{3}
b) 14.09×10^{-5}
\qquad 3.76×10^{-10}

Ex 14) 8×10^{2} \qquad 7×10^{3}

Example 15) Order the following numbers from least to greatest: $6.7 \times 10^{-5}, 8.2 \times 10^{-5}, 1.3 \times 10^{-5}$

Example 16) Order the following numbers from least to greatest: $1.24 \times 10^{5}, 7.3 \times 10^{-6}, 1.1 \times 10^{10}$

Now, You Try!

Compare the following using \langle,$\rangle , or =$
17) 8.4×10^{-11} \qquad 7.3×10^{-11}
18) 6.72×10^{3} \qquad 9.3×10^{3}
19) 5.4×10^{5} \qquad 540,000
20) 8.6×10^{16} \qquad 8.6×10^{12}
21) 7.88×10^{-2} \qquad 1.24×10^{2}
22) 3.5×10^{6} \qquad 5.6×10^{3}

Order the following from Least to Greatest.

23) $4.2 \times 10^{-7}, 3.6 \times 10^{-7}, 1.1 \times 10^{-7}$	$24) 3.1 \times 10^{10}, 1.2 \times 10^{-3}, 1.2 \times 10^{3}$

25) Which of these numbers is the least?
A) 8.7×10^{6}
B) 9.35×10^{6}
C) 3.14×10^{6}
D) 2.01×10^{6}
26) Which of these numbers is the greatest?
A) 1.12×10^{-3}
B) 3.25×10^{-8}
C) 8.76×10^{-10}
D) 9.347×10^{-20}
